
Bridging Functional Safety Analysis and
Software Architecture Assessment
Safety scenarios in Architecture Trade-off Analysis
Method (ATAM)

Miroslaw Staron

Software Engineering

Computer Science and Engineering

Chalmers | Göteborgs universitet

Outline of my talk

• Architecture Trade-off Analysis Method – ATAM

• Example analysis with adding a rearview camera

• Examples of common modifiability scenarios in architecture analysis

• ISO/IEC 26262 safety analysis and its impact on architecture analysis

• New scenarios for safety analysis

• Summary and research outlook

Software architecture and its viewpoints

• Software architecture
– Software architecture refers to high-level structures of a software system, the discipline of creating such

structures, and the documentation of these structures

• The most common viewpoints
– Logical viewpoint
 Software classes, Simulink blocks, source code modules, etc.

– Physical viewpoint
 ECUs, buses

– Deployment viewpoint
 Execution processes deployed onto ECUs, signals on buses

– Functional viewpoint
 Features and functions

ATAM

• Architecture Trade-off
Analysis Method

– Addresses the question
How good is my
architecture?

– Evaluates the architecture
from the perspective of
quality attributes to
idenfity risks and the
related sensitivity points

Impacts

Distilled into

Scenarios

Architectural
decisions

Quality
attributes

Architectural
approaches

Business
drivers

Architectural
plan

Trade-offs

Sensitivity
points

Non-risks

RisksRisk themes

Analysis

ATAM process has eight steps

• Present ATAM

• Present business drivers

• Present architecture

• Identify architectural approaches

• Generate quality attribute utility tree

• Analyze archtiectural approaches

• Brainstorm and prioritize scenarios

• Present results

MOTIVATIONAL EXAMPLE

THE IMPACT OF ADDING A REAR CAMERA ON THE
SAFETY OF THE ELECTRICAL SYSTEM

Business drivers

• The car’s electrical system should support the advanced mechanisms of active safety (i.e.
controlled by software) and should assure that none of the mechanisms interferes with
another one, jeopardizing the safety.

• Main characters in this play
– Electrical system
– Active safety
– Interference

Where things can go wrong: relevant quality attributes
tree

Focus on today’s talk:

Adding safety as a quality attribute

Functional architecture – how functions depend on one
another

This view helps us to overview
functions which are available in our
product line

Physical architecture – which computers we can use

• Main ECU: the main computer of the car,
controlling the configuration of the car,
initialization of the electronics and
diagnostics of the entire system. The main
ECU has the most powerful computing unit
in the car with the largest memory

• Back Body Controller (BBC): the computer
which is responsible for coordinating
functions controlling the back functions (e.g.
stop lights)

Logical architecture – which software components are
active

Two different architectural approaches for adding the rear
camera

Architectural Decision A

Placing the processing of
the video feed on the

Main ECU

Architectural Decision B

Placing the processing of the
video feed on BBC

Identifying the relevant quality attribtues – generating
quality attribute utility tree

Artifact
Main ECU, BBC ECU,

CAN bus

Source
Rear-camera

Stimulus
Camera feed

Environment
Car in reverse driving

Response
Process video data
and show it on the

display

Measure
Video displayed in

real-time and no loss
of safety signals from

parking sensors

Quality attribute utility tree

• Quality attributes take part
in our trade-off

• Once we know that we
can start brainstorming
about their importance
and impact
– On business drivers
– On quality attributes

Quality attribute

Importance and
impact

How it’s impacted

The trade-off

• Brainstorming and the
second analysis lead to
the idenfitication of
– Attributes
– Stimulus
– Trade-offs
– Risks
– Sensitivity points

Summarizing the ATAM example allows to introduce new
scenarios
• In the example we focused on the modifiability
 we could focus on reliability, security, …

• Safety was implicit could be explicit

• The summary shows a good way to put
together an argument
– Could be used in ISO/IEC 15939 argumentation if

used correctly

Modifiability scenarios used in ATAM

• Scenario 1: A request arrives to change the functionality of the system.
– The change can be to add new functionality, to modify existing functionality, or to delete functionality

• Scenario 2: A request arrives to change one of the components (e.g. because of a technology
shift)
– The scenario needs to consider the change propagation to the other components.

• Scenario 3: Customer wants different systems with different capabilities but using the same
software
– Therefore advanced variability has to be built into the system.

• Scenario 4: New emission laws
– The constantly changing environmental laws require adaptation of the system to decrease its environmental

impact.

• Scenario 5: Simpler engine models
– Replace the engine models in the software with simple heuristics for the low-cost market.

ISO/IEC 26262 safety analysis and its impact on
architecture analysis

ISO 26262
• Process requirements on

safety
• Requirements on properties

and verification/validation
• Hazards and classification

ATAM
• Trade-off analysis between

safety and other quality
attributes

• Arguments for design choices
• Safety sensitivity points

Scenarios and
requirements

Argumentation

Software architecture in
ISO 26262
• Notation

– Formal – informal

• Principles
– Hirarchical
– Restricted size
– …

• Code/control flow complexity
– Algorithms, state machines, block diagrams

WWW.STARON.NU

Ways of bridging safety and ATAM

• Introduce safety scenarios to ATAM analysis
– Use hazard analysis techniques to generate the scenarios

• Introduce ATAM trade-offs into the safety argumentation
– Use the items from tables 3 and 4, Chapter 6, ISO 26262
– Add these items to the ATAM templates, e.g. sensitivity point description

• Introduce safety properties explicitly into every quality attributes utility tree
– Hierarchical structure of software components
– …

Examples of new scenarios for safety analysis

• Scenario 1:
– A component’s ASIL level is raised from ASIL C to ASIL D:
 How will this affect the design of the system?
 Which new checks have to be done?

• Scenario 2:
– External monitoring facility needs to be added to a component
 How will this affect the functionality?

• Scenario 3:
– Increased autonomous driving level from 3 to 4 NHSTA:
 Level 3: The driver can fully cede control of all safety-critical functions in certain conditions

• The car senses when conditions require the driver to retake control and provides a "sufficiently comfortable
transition time" for the driver to do so.

 Level 4: The vehicle performs all safety-critical functions for the entire trip, with the driver not expected to
control the vehicle at any time.

Scenario 1: example

• MainECU_1 – since the camera feed is safety critical with potentially high impact (ASIL D)
we need to raise the ASIL level of MainECU_1 to ASIL D
– New sub-scenarios:
 restricted use of interrupts
 plausability checks

– Sensitivity point 1: execution environment
– Risk 1: camera feed can take over all processing power (no interrupts)
– Trade-off 1: place the camera

feed processing on BBC_1

Sensitivity points – the most important outcome of
scenario 1
• How should we V&V the

components?
– Which components can be

complex?
– When should we redesign to

increase safety?

Sensitivity points – the most important outcome of
scenario 1
• What kind of mechanisms

should we use?
– Is sandboxing needed?
– Are interrupts allowed?

Next steps: improvement of safety analysis – link safety
goal notation with architecture notations (e.g. SySML)
• Traceability between hazard analysis

and software components

• Traceability of the design

• V&V methods aligned with Agile SW
development

Summary and research outlook

• ATAM provides methods and tools to address the question:
How good is our architecture?

• ISO 26262 provides the requirements for safety analysis
and system construction (process)

• Bridging these leads to decreased workload for architecture
analysis and safety argumentation

• In the end we can even address the question: How safe is
our architecture?

Acknowledgements

• I would like to thank Dr. Imed Hammouda for letting me reuse his introductory slides about
ATAM (slide 4 and 13)

	Bridging Functional Safety Analysis and Software Architecture Assessment�Safety scenarios in Architecture Trade-off Analysis Method (ATAM)
	Outline of my talk
	Software architecture and its viewpoints
	ATAM
	ATAM process has eight steps
	Motivational example��The impact of adding a rear camera on the safety of the electrical system
	Business drivers
	Where things can go wrong: relevant quality attributes tree
	Functional architecture – how functions depend on one another
	Physical architecture – which computers we can use
	Logical architecture – which software components are active
	Two different architectural approaches for adding the rear camera
	Identifying the relevant quality attribtues – generating quality attribute utility tree
	Quality attribute utility tree
	The trade-off
	Summarizing the ATAM example allows to introduce new scenarios
	Modifiability scenarios used in ATAM
	ISO/IEC 26262 safety analysis and its impact on architecture analysis�
	Software architecture in ISO 26262 �
	Ways of bridging safety and ATAM
	Examples of new scenarios for safety analysis
	Scenario 1: example
	Sensitivity points – the most important outcome of scenario 1
	Sensitivity points – the most important outcome of scenario 1
	Next steps: improvement of safety analysis – link safety goal notation with architecture notations (e.g. SySML)
	Summary and research outlook
	Acknowledgements

